Sense and Antisense Transcripts of Convergent Gene Pairs in Arabidopsis thaliana Can Share a Common Polyadenylation Region
نویسندگان
چکیده
The Arabidopsis genome contains a large number of gene pairs that encode sense and antisense transcripts with overlapping 3' regions, indicative for a potential role of natural antisense transcription in regulating sense gene expression or transcript processing. When we mapped poly(A) transcripts of three plant gene pairs with long overlapping antisense transcripts, we identified an unusual transcript composition for two of the three gene pairs. Both genes pairs encoded a class of long sense transcripts and a class of short sense transcripts that terminate within the same polyadenylation region as the antisense transcripts encoded by the opposite strand. We find that the presence of the short sense transcript was not dependent on the expression of an antisense transcript. This argues against the assumption that the common termination region for sense and antisense poly(A) transcripts is the result of antisense-specific regulation. We speculate that for some genes evolution may have especially favoured alternative polyadenylation events that shorten transcript length for gene pairs with overlapping sense/antisense transcription, if this reduces the likelihood for dsRNA formation and transcript degradation.
منابع مشابه
Alternative polyadenylation of antisense RNAs and flowering time control.
Flowering time is controlled by precision in gene regulation mediated by different pathways. Two Arabidopsis thaliana components of the autonomous flowering pathway, FCA and FPA, function as genetically independent trans-acting regulators of alternative cleavage and polyadenylation. FCA and FPA directly associate with chromatin at the locus encoding the floral repressor FLC, but appear to contr...
متن کاملGenome-wide landscape of polyadenylation in Arabidopsis provides evidence for extensive alternative polyadenylation.
Alternative polyadenylation (APA) has been shown to play an important role in gene expression regulation in animals and plants. However, the extent of sense and antisense APA at the genome level is not known. We developed a deep-sequencing protocol that queries the junctions of 3'UTR and poly(A) tails and confidently maps the poly(A) tags to the annotated genome. The results of this mapping sho...
متن کاملIntegrated detection of natural antisense transcripts using strand-specific RNA sequencing data.
Pairs of RNA molecules transcribed from partially or entirely complementary loci are called cis-natural antisense transcripts (cis-NATs), and they play key roles in the regulation of gene expression in many organisms. A promising experimental tool for profiling sense and antisense transcription is strand-specific RNA sequencing (ssRNA-seq). To identify cis-NATs using ssRNA-seq, we developed a n...
متن کاملAntisense-mediated FLC transcriptional repression requires the P-TEFb transcription elongation factor.
The functional significance of noncoding transcripts is currently a major question in biology. We have been studying the function of a set of antisense transcripts called COOLAIR that encompass the whole transcription unit of the Arabidopsis floral repressor FLOWERING LOCUS C (FLC). Alternative polyadenylation of COOLAIR transcripts correlates with different FLC sense expression states. Suppres...
متن کاملNoncanonical translation initiation of the Arabidopsis flowering time and alternative polyadenylation regulator FCA.
The RNA binding protein FCA regulates the floral transition and is required for silencing RNAs corresponding to specific noncoding sequences in the Arabidopsis thaliana genome. Through interaction with the canonical RNA 3' processing machinery, FCA affects alternative polyadenylation of many transcripts, including antisense RNAs at the locus encoding the floral repressor FLC. This potential for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011